CHAPTER 2

Syntax

Overview

This chapter describes the syntax and structure of a Dylan program, from the
outside in. This is one of the two defining characteristics of Dylan. The other is
the set of objects on which a Dylan program operates; objects and their types
are discussed in the following chapters. This section is only an overview;
language constructs briefly mentioned here are explained in detail in later
sections. A formal specification of Dylan syntax appears in Appendix A,
“BNE.”

Libraries and Modules

A complete Dylan program consists of one or more libraries. Some of these
libraries are written by the programmer, others are supplied by other
programmers or by the Dylan implementation. A library is Dylan's unit of
separate compilation and optimization. The libraries that compose a program
can be linked together as early as during compilation or as late as while the
program is running. Program structure inside of a library is static and does not
change after compilation. However, many Dylan implementations provide an
incremental compilation feature which allows a library under development to
be modified, while the program is running, by modifying and recompiling
portions of the library.

A library contains one or more modules. A module is Dylan's unit of global
name scoping, and thus of modularity and information hiding. A module can
be exported from its library; otherwise it is internal to that library. A library
can import modules from other libraries. Only an exported module can be
imported.

A module contains zero or more source records and a set of bindings.

A source record is an implementation-defined unit of source program text. For
example, in a file-based development environment each source file would be
one source record. As another example, in an interactive Dylan interpreter
each executable unit of programmer input would be a source record. The

Overview 9

CHAPTER 2

Syntax

source program text in a source record is a body, a grammatical element used in
several places in Dylan.

Bindings

A binding is an association of a name with a value. The bindings in a module
persist for the life of the program execution. The scope of such a binding is its
module. That is, the binding is visible to all source-records in the module. A
module can export bindings and can import bindings from other modules.
Only an exported binding can be imported. A binding is visible to all
source-records in a module that imports it.

A binding may be specialized. This restricts the types of values that may be
held in the binding. An error will be signaled on any attempt to initialize or
assign the binding to a value that is not of the correct type.

Abinding is either constant or variable. A constant (or read-only) binding
always has the same value. In contrast, a variable (or writable) binding can
have its value changed, using the assignment operator :=. Most bindings in a
typical Dylan module are constant.

Macros

A macro is an extension to the core language that can be defined by the
programmer, by the implementation, or as part of the Dylan language
specification. Much of the grammatical structure of Dylan is built with
macros. A macro defines the meaning of one construct in terms of another
construct. The original construct is the call to the macro. The replacement
construct is the expansion of the macro. The compiler processes the expansion
in place of the call.

Portions of the call to a macro are substituted into part of the macro definition
to create the expansion. This substitution preserves the meanings of names. In
other words, each name inserted into the expansion from the macro call refers
to the same binding that it referred to in the call, and each name inserted into
the expansion from the macro definition refers to the same binding that it
referred to in the definition.

10 Bindings

Bodies

CHAPTER 2

Syntax

A macro is named by a binding and thus is available for use wherever that
binding is visible. There are three kinds of macros: defining macros, which
extend the available set of definitions; statement macros, which extend the
available set of statements; and function macros, which look syntactically like
function calls but have more flexible semantics.

Abody is a sequence of zero or more constituents. When multiple constituents
are present, they are separated by semicolons. When at least one constituent is
present, the last constituent can optionally be followed by a semicolon; this
allows programmers to regard the semicolon as either a terminator or a
separator, according to their preferred programming style.

A constituent is either a definition, a local declaration, or an expression.
Definitions and local declarations form the structure of a program and do not
return values. In contrast, expressions are executed for the values they return
and/or the side-effects that they perform.

Definitions

A definition is either a call to a user-defined defining macro, a call to a built-in
defining macro, or a special definition. Typically, a definition defines a binding
in the module containing the definition. Some definitions define more than one
binding, and some do not define any bindings.

A user-defined defining macro is a macro that defines a definition in terms of
other constructs. A call to a user-defined defining macro always begins with
the word define and includes the name of the defining macro. This name
when suffixed by “~definer” is the name of a visible binding whose value is
the defining macro. The rest of the syntax of a call to a user-defined defining
macro is determined by the particular macro. Some definitions include a body.
Advanced programmers often define new defining macros as part of
structuring a program in a readable and modular way.

A built-in defining macro is like a user-defined defining macro but is specified
as part of the Dylan language. There are eight built-in defining macros:

Bodies 11

CHAPTER 2

Syntax

define class,define constant,define generic,define inert,
define library ,define method,define module, and define
variable.

A special definition is a definition construct that is built into the grammar of
Dylan. There is only one special definition: define macro.

An implementation can add new kinds of definitions as language extensions.
Such definitions may be implemented as special definitions. However, they
will more commonly take the form of user-defined definition macros that are
the values of bindings exported by implementation-defined modules.

Local Declarations

Alocal declaration is a construct that establishes local bindings or condition
handlers whose scope is the remainder of the body following the local
declaration.

Unlike module bindings, local bindings are established during program
execution, each time the local declaration is executed. They persist for as long
as code in their scope is active. Local bindings persist after the body containing
them returns if they are referenced by a method created inside the body and a
reference to the method escapes from the body, so that it could be called after
the body returns. Unlike module bindings, local bindings are always variable.
However, since a local binding has a limited scope, if there is no assignment
within that scope, the local binding is effectively constant.

Alocal binding shadows any module binding with the same name and any
surrounding local binding with the same name. The innermost binding is the
one referenced.

The name of a local binding cannot be the name of a macro.

There are three kinds of local declaration: local value bindings (1et), local
method bindings (local), and condition handler establishment (1et
handler).

The local value bindings construct, let, executes an expression and locally
binds names to the values returned by that expression.

12 Local Declarations

CHAPTER 2

Syntax

The local method bindings construct, local, locally binds names to bare
methods. These bindings are visible in the remainder of the body and also
inside the methods, permitting recursion.

The condition handler establishing construct, let handler, establishes a
function to be called if a condition of a given type is signaled during the
execution of the remainder of the body or anything the body calls. The handler
is disestablished as soon as the body returns. Unlike the other two kinds of
local declaration, 1et handler does not establish any bindings.

Expressions

An expression is a construct that is executed for the values it returns and/or
the side-effects that it performs. The “active” portions of a Dylan program are
expressions. An expression is either a literal constant, a named value reference,
a function call, a unary operator call, a binary operator call, an element
reference, a slot reference, a parenthesized expression, or a statement.

An operand is a restricted expression: it cannot be a unary or binary operator
call nor a symbol literal. The other seven forms of expression are allowed.
Operands appear in situations in the grammar where an expression is desirable
but the full generality of expressions would make the grammar ambiguous.

A literal constant directly represents an object. Literal constants are available
for numbers, characters, strings, symbols, boolean values, pairs, lists, and
vectors. For example:

number 123, 1.5, -4.0, #xlfde
character 'a', '\n'

string "foo", "line 1\nline 2"
symbol test:, #"red"

boolean value #t, #£

pair #(1 . "one")

list #(1, 2, 3)

vector #[11, 2, 3]

Expressions 13

14

CHAPTER 2

Syntax

Literal constants are immutable. Attempting to modify an immutable object
has undefined consequences. Immutable objects may share structure. Literal
constants that are equal may or may not be identical.

A symbol can be indicated in two ways: as a keyword (for example, test:) or
as a unique string (for example, #"red"). The difference is purely syntactic;
the choice is provided to promote program readability.

A string literal can be broken across lines by writing two string literals in a row,
separated only by whitespace; they are automatically concatenated (without a
newline character).

A named value reference returns the value of a visible binding given its name.
For example, foo. The referenced binding can be a module binding (either
constant or variable) or a local binding established by a local declaration or by
a parameter list. The value of the binding must not be a macro.

A reserved word is a syntactic token that has the form of a name but is
reserved by the Dylan language and so cannot be given a binding and cannot
be used as a named value reference. There are seven reserved words in Dylan:
define, end, handler, let, local, macro, and otherwise.

A function call applies a function to arguments, and returns whatever values
the function returns. The function is indicated by an operand and can be a
generic function, a method, or a function macro. The arguments are indicated
by expressions separated by commas and enclosed in parentheses. For
example, f (x, y). For readability, the comma can be omitted between the
two arguments in a keyword/value pair, for example element(c, k,
default: d) isa function call with four arguments.

A unary operator call consists of an operand preceded by one of the two unary
operators - (arithmetic negation) or ~ (logical negation). For example, - x.
This is actually an abbreviated notation for a function call.

A binary operator call consists of two expressions separated by one of the
binary operators + (addition), - (subtraction), * (multiplication), / (division), *
(exponentiation), = (equality), == (identity), < (less than), > (greater than), <=
(less than or equal), >= (greater than or equal), ~= (not equal), ~== (not
identical), & (logical and), | (logical or), or := (assignment). When binary
operator calls are chained together, they are grouped by rules of precedence
and associativity and by parentheses. For example, (a - b) * x + ¢ * x
~ 2. Except for the last three operators, a binary operator call is actually an
abbreviated notation for a function call. The last three operators (&, |, and :=)
are treated specially be the compiler.

Expressions

CHAPTER 2

Syntax

An element reference consists of an operand that indicates a collection and an
expression in square brackets that indicates a key. Instead of a key, there can
be multiple expressions separated by commas that indicate array indices. For
example, c[k] ora[i, Jj].Thisisactually an abbreviated notation for a
function call.

A slot reference is another abbreviated notation for a function call. It consists
of an operand that indicates an object, a period, and a named value reference
that indicates a one-argument function to apply to the object. Typically the
function is a slot getter but this is not required. For example,
airplane.wingspan.

A parenthesized expression is any expression inside parentheses. The
parentheses have no significance except to group the arguments of an operator
or to turn a general expression into an operand. For example, (a + b) * c.

Statements

A statement is a call to a statement macro. It begins with the name of a visible
binding whose value is a statement macro. The statement ends with the word
end optionally followed by the same name that began the statement. In
between is a program fragment whose syntax is determined by the macro
definition. Typically this fragment includes an optional body. For example,
if (ship.ready?) embark(passenger, ship) end if.

A statement macro can be built-in or user-defined.

A user-defined statement macro is a macro that defines how to implement a
statement in terms of other constructs. Advanced programmers often define
new statement macros as part of structuring a program in a readable and
modular way.

A built-in statement macro is like a user-defined statement macro but is
specified as part of the Dylan language. There are nine built-in statement
macros: begin, block, case, for, if, select, unless, until, and while.

An implementation can add new kinds of statements as language extensions.
Such a statement takes the form of a user-defined statement macro that is the
value of a binding exported by an implementation-defined module.

Statements 15

CHAPTER 2

Syntax

Parameter Lists

Several Dylan constructs contain a parameter list, which describes the
arguments expected by a function and the values returned by that function.
The description includes names, types, keyword arguments, fixed or variable
number of arguments, and fixed or variable number of values. The argument
names specified are locally bound to the values of the arguments when the
function is called. The value names specified are only for documentation.

The syntactic details of parameter lists are described in “Methods” on page 412.

Lexical Syntax

16

Dylan source code is a sequence of tokens. Whitespace is required between
tokens if the tokens would otherwise blend together. Whitespace is optional
between self-delimiting tokens. Alphabetic case is not significant except within
character and string literals.

Whitespace can be a space character, a tab character, a newline character, or a
comment. Implementations can define additional whitespace characters.

A comment can be single-line or delimited. Although comments count as
whitespace, the beginning of a comment can blend with a preceding token, so
in general comments should be surrounded by genuine whitespace.

A single-line comment consists of two slash characters in a row, followed by
any number of characters up to and including the first newline character or the
end of the source record. For example, // This line is a kludge!.

A delimited comment consists of a slash character immediately followed by a
star character, any number of characters including balanced slash-star /
star-slash pairs, and finally a star character immediately followed by a slash
character. For example, /* set x to 3 */.

A single-line comment may appear within a delimited comment; occurances of
slash-star or star-slash within the single line comment are ignored.

Parameter Lists

CHAPTER 2

Syntax

A token is a name, a #word, an operator, a number, a character literal, a string
literal, a symbol literal, or punctuation.

A name is one of the following four possibilities:
m An alphabetic character followed by zero or more name characters.

®m A numeric character followed by two or more name characters including at
least two alphabetic characters in a row.

m A graphic character followed by one or more name characters including at
least one alphabetic character.

m A ”\” (backslash) followed by a function operator.

An alphabetic character is any of the 26 letters of the Roman alphabet in upper
and lower case.

A numeric character is any of the 10 digits.
A graphic character is one of the following:
lag*x<=>|"$%@ _

A name character is an alphabetic character, a numeric character, a graphic
character, or one of the following:
-+~-2/

The rich set of name characters means that name and operator tokens can
blend. Thus Dylan programs usually set off operators with whitespace.

Implementations can add additional characters but programs using them will
not be portable.

A #-word is one of #t, #f, #next, #rest, #key, or #all-keys. The first two
are literal constants, the others are used in parameter lists. Implementations
can add additional implementation-defined #-words, but programmers cannot
add their own #-words.

Lexical Syntax 17

18

CHAPTER 2

Syntax

An operator is one of the following:

+ addition
subtraction and negation
multiplication
division
exponentiation
equality
== identity

less than
> greater than
<= less than or equal
>= greater than or equal
~= not equal
~== not identical
& logical and

logical or
1= assignment
~ logical negation

>N * |

Programmers cannot add their own operators.

A number is a decimal integer with an optional leading sign, a binary integer,
an octal integer, a hexadecimal integer, a ratio of two decimal integers with an
optional leading sign, or a floating-point number. The complete syntax of
numbers is given in “Numbers” on page 406.

A character literal is a printing character (including space, but not ' nor \) or a
backslash escape sequence enclosed in a pair of single-quote characters .

A string literal is a sequence of printing characters (including space, but not "
nor \) and backslash escape sequences enclosed in a pair of double-quote
characters ".

The backslash escape sequences used in character and string literals allow
“quoting” of the special characters ', ", and \, provide names for “control”
characters such as newline, and allow Unicode characters to be specified by

their hexadecimal codes.

A symbol literal is a keyword or a unique string. A keyword is a name
followed immediately by a colon character “:”. A unique string is a sharp sign
“#” followed immediately by a string literal.

Lexical Syntax

CHAPTER 2

Syntax

Punctuation is one of the following:

() parentheses

[] square brackets

{3} curly brackets

r comma
period

; semicolon

= defaulting/initialization
type specialization

== singleton specialization

=> arrow

#(list/pair literal

#[vector literal

2,22 macro pattern variables

macro ellipsis

Note that some tokens are both punctuation and operators. This ambiguity is
resolved by grammatical context.

Note that some punctuation tokens (for example period and equal sign) are
capable of blending into some other tokens. Where this can occur, whitespace
must be inserted to delimit the token boundary.

Special Treatment of Names

Escaping Names

The escape character (\) followed by any name or operator-name has the
same meaning as that name or operator-name, except that it is stripped of
special syntactic properties. If it would otherwise be a reserved word or
operator, it is not recognized as such.

For example, \if and if are names for the same binding, but \if is treated
syntactically as a named value reference, while if is the beginning of a
statement. Similarly, \+ and + refer to the same binding, but the former is
treated syntactically as a named value reference, and the latter as an operator.

Special Treatment of Names

CHAPTER 2

Syntax

For reserved words, this allows the names of statement macros to be exported
and imported from modules. It does not allow them to be used as the names of
local bindings, nor does it allow them to be executed. (That is, they cannot be
used as bindings to runtime values.)

For operators, it allows the operator to be used where a named value reference
is required, for example as the name in a method definition, as an argument to
a function, or in a define module export clause. This feature can only be
used for operators which provide a shorthand for a function call. It cannot be
used for special operators.

Function Call Shorthand

Dylan provides convenient syntax for calling a number of functions. These
include the operators which are not special operators, the array reference
syntax, and the singleton syntax.

In all cases, the syntax is equivalent to using the name of the function in the
current environment. The syntax does not automatically refer to a binding in
the Dylan module.

Top-Level Definitions

20

Dylan's built-in defining macros can only be used at top level. When the
expansion of a user-defined macro includes a call to a built-in defining macro,
the user-defined macro also can only be used at top level.

A constituent is at top level if and only if it is a direct constituent of a body, no
preceding constituent of that body is a local declaration, and the body is either
the body of a source record or the body of a begin statement that is itself a
constituent at top level. When a constituent appears inside a call to a macro,
whether that constituent is at top level must be determined after macro
expansion.

The effect of the above rule is that a constituent at top level is not in the scope
of any local declarations, is not subject to any condition handlers other than
default handlers, and is not affected by any flow of control constructs such as
conditionals and iterations. This restriction enhances the static nature of
definitions.

Top-Level Definitions

CHAPTER 2

Syntax

Dylan Interchange Format

The Dylan interchange format is a standard file format for publishing Dylan
source code. Such a file has two parts, the file header and the code body. The
file header comes before the code body.

The code body consists of a source record.
The file header consists of one or more keyword-value pairs, as follows:

m Akeyword is a letter, followed by zero or more letters, digits, and hyphens,
followed by a colon, contains only characters from the ISO 646 7-bit
character set, and is case-independent.

m A keyword begins on a new line, and cannot be preceded by whitespace.

m All text (excluding whitespace) between the keyword and the next newline
is considered to be the value. Additional lines can be added by having the
additional lines start with whitespace. Leading whitespace is ignored on all
lines.

m The meaning of the value is determined by the keyword.

m Implementations must recognize and handle standardized keywords
properly, unless the specification for a keyword explicitly states that it can be
ignored.

m When importing a file, implementations are free to ignore any non-standard
keyword-value pairs that they do not recognize.

m When exporting a file, implementations must use standard keywords
properly. Implementations are free to use non-standard keywords.

m The definition of a keyword may specify that the keyword may occur more
than once in a single file header. If it does not, then it is an error for the
keyword to occur more than once. If it does, it should specify the meaning
of multiple occurances.

The file header cannot contain comments, or other Dylan source code.

Blank lines may not appear in the file header. A blank line defines the end of
the file header and the beginning of the code body. The blank line is not part of

Dylan Interchange Format 21

CHAPTER 2

Syntax

the code body. (A "blank line" is a line consisting of zero or more space or tab
characters, ending in a newline character.)

The following standard keywords are defined:

language: language-name [Header keyword]

The source record in the file is written in the named language. The only
portable value for this keyword is infix-dylan.

module: module-name [Header keyword]

The source record in the file is associated with the named module. This
keyword is required.

author: text [Header keyword]
copyright: text [Header keyword]
version: text [Header keyword]

These are provided for standardization. They are optional, and can be ignored
by the implementation.

A typical Dylan source file might look like this:

module: quickdraw
author: J. Random Rect
Linear Wheels, Inc., "Where quality is a slogan!"
rect@linear.com
copyright: (c) 1995 Linear Wheels, Inc., All rights reserved
version: 1.3 alpha (not fully tested)

define constant $black-color = ...

Naming Conventions

Several conventions for naming module bindings help programmers identify
the purposes of bindings. In general, the names of bindings do not affect the

22 Naming Conventions

CHAPTER 2

Syntax

semantics of a program, but are simply used to improve readability. (The
exceptions to this rule are the “~definer” suffix used by definition macros,
and the “-setter” suffix, described below.)

m Module bindings used to hold types begin and end with angle brackets.

<window>
<object>
<character>
<number>
<stream>
<list>

m Variable module bindings begin and end with asterisks.

parse-level
incremental-search-string
machine-state

window-count
m Program constants begin with a dollar sign.

$pi
Send-of-file

m The names of most predicate functions end with a question mark.
Predicates are functions which return a true or false value.

subclass?
even?

instance?

m Operations that return a value similar to one of their arguments and which
also destructively modify the argument end ina !. (It will often also be the
case that destructive and non-destructive variations of the function exist.) !
isn't a universal warning that an operation is destructive. Destructive
functions that return other values (like —~setter functions and pop) don't
need to use the ! convention.

reverse!

sort!

Naming Conventions 23

24

CHAPTER 2

Syntax

m Operations that retrieve a value from a location are called getters.
Operations that store into a location are called setters. In general, getters
and setters come in pairs. Setter binding names are derived by appending
“-setter” to the corresponding getter binding name. This convention is
used to generate setter names automatically, and it is used by :=, the
assignment operator, to find the setter that corresponds to a given getter.

element element-setter
size size-setter
color color-setter

Naming Conventions

	Dylan Reference Manual
	Contents
	About This Book
	Introduction
	Background and Goals
	Language Overview
	Manual Notation

	Syntax
	Overview
	Libraries and Modules
	Bindings
	Macros
	Bodies
	Definitions
	Local Declarations
	Expressions
	Statements
	Parameter Lists
	Lexical Syntax
	Special Treatment of Names
	Escaping Names
	Function Call Shorthand

	Top- Level Definitions
	Dylan Interchange Format
	Naming Conventions

	Program Structure
	Modules
	Defining Module Bindings

	Libraries

	Program Control
	Overview
	Function Calls
	General Syntax
	Slot Reference
	Element Reference

	Operators
	Assignment
	Conditional Execution
	True and False

	Iteration
	Iteration Statements
	Tail Recursion

	Non- Local Exits and Cleanup Clauses
	Multiple Values
	Order of Execution
	Execution Order Within Expressions

	Types and Classes
	Overview
	The Type Protocol
	Base Types and Pseudosubtypes
	Type Disjointness

	Classes
	Features of Classes
	Creating Classes
	Class Inheritance
	Computing the Class Precedence List

	Slots
	Slot Inheritance
	Slot Specifications
	Init Specifications
	Init Keywords
	Slot Allocation
	Constant Slots
	Specializing Slots
	Overriding Slots in Subclasses
	Using Slots

	Instance Creation and Initialization
	Overview
	Additional Behavior of Make and Initialize
	Initialization of Class Allocated Slots
	Testing the Initialization of a Slot

	Inherited Slot Specifications
	Initialization Argument Specifications
	Initialization Argument Inheritance

	Singletons
	Union Types
	Limited Types
	Limited Type Constructor
	Limited Integer Types
	Limited Integer Type Protocol

	Limited Collection Types

	Functions
	Overview
	Generic Functions
	Methods
	Methods in Generic Functions
	Local Methods
	Bare Methods
	Closures

	Parameter Lists
	Kinds of Parameters
	Kinds of Parameter Lists
	Specializing Required Parameters
	Keyword Parameters
	Types for Keyword Parameters

	Result Values
	Parameter List Congruency
	Parameter Lists of Implicitly Defined Generic Functions

	Method Dispatch
	Method Specificity
	Calling Less Specific Methods
	Passing Different Arguments to Next- Method
	The Next- Method Parameter

	Operations on Functions

	Conditions
	Background
	Overview
	Signalers, Conditions, and Handlers
	Exception Handling
	Stack Model
	Recovery and Exits
	Restarts
	Recovery Protocols

	Condition Messages
	Introspective Operations

	Collections
	Overview
	The Iteration Protocol

	Collection Keys
	Iteration Stability and Natural Order
	Mutability
	Collection Alteration and Allocation
	Collection Alignment
	Defining a New Collection Class
	Tables
	Element Types
	Limited Collection Types
	Element Type Subclassing
	Creating Limited Collection Types
	Uninstantiable Limited Collection Types
	Instantiable Limited Collection Types

	Sealing
	Overview
	Explicitly Known Objects
	Declaring Characteristics of Classes
	Declaring Characteristics of Generic Functions
	Define Inert Domain
	Rationale
	Pseudosubtype Examples
	Abbreviations for Define Inert Domain
	Implied Restrictions on Method Definitions

	Macros
	Overview
	Compilation and Macro Processing

	Extensible Grammar
	Definition Macros
	Statement Macros
	Function Macros

	Macro Names
	Rewrite Rules
	Patterns
	Special Rules for Definitions
	Special Rules for Statements
	Special Rules for Function Macros

	Pattern Variable Constraints
	Intermediate Words

	Templates
	Auxiliary Rule Sets
	Hygiene
	Intentional Hygiene Violation
	Hygiene Versus Module Encapsulation

	Rewrite Rule Examples
	Statement Macros
	Begin
	Block
	Case
	For
	If
	Method
	Select
	Unless
	Until
	While

	Definition Macros
	Define Class
	Define Constant
	Define Domain
	Define Generic
	Define Library
	Define Method
	Define Module
	Define Variable

	Additional Examples
	Test and Test- setter
	Transform!
	Formatting- table
	With- input- context
	Define Command
	Get- resource
	Completing- from- suggestions
	Define Jump- instruction

	The Built- In Classes
	Overview
	Objects
	Types
	Types
	Classes
	Singletons

	Simple Objects
	Characters
	Symbols
	Booleans

	Numbers
	Numbers
	Complex Numbers
	Reals
	Floats
	Rationals
	Integers

	Collections
	Collections
	Explicit Key Collections
	Sequences
	Mutable Collections
	Stretchy Collections
	Arrays
	Vectors
	Deques
	Lists
	Ranges
	Strings
	Tables

	Functions
	Functions
	Generic Functions
	Methods

	Conditions
	Conditions
	Serious Conditions
	Errors
	Warnings
	Restarts
	Aborts

	The Built- In Functions
	Overview
	Constructing and Initializing Instances
	General Constructor
	Initialization
	Specific Constructors

	Equality and Comparison
	Not and Identity
	Equality Comparisons
	Magnitude Comparisons

	Arithmetic Operations
	Properties
	Arithmetic Operations

	Coercing and Copying Objects
	General Coercion Function
	Coercing Case
	Copying Objects

	Collection Operations
	Collection Properties
	Selecting Elements
	Adding and Removing Elements
	Reordering Elements
	Set Operations
	Subsequence Operations
	Mapping and Reducing
	Simple Mapping
	Extensible Mapping Functions
	Other Mapping Functions

	The Iteration Protocol
	The Table Protocol

	Reflective Operations on Types
	Functional Operations
	Function Application
	Reflective Operations on Functions
	Operations on Conditions
	Signaling Conditions
	Handling Conditions
	Introspection on Conditions

	Other Built- In Objects
	Other Built- In Objects

	The Built- In Macros and Special Operators
	Overview
	Definitions
	Local Declarations
	Statements
	Conditionals
	Iteration Constructs

	Special Operators
	Assignment
	Conditional Execution

	Appendix A
	General Notes
	Lexical Notes
	Lexical Grammar
	Comments
	Tokens
	Reserved Words
	Names, Symbols and Keywords
	Operators
	Character and String Literals
	Numbers

	Grammar
	Program Structure
	Property Lists
	Fragments
	Definitions
	Local Declarations
	Expressions
	Statements
	Methods
	Macro Definitions
	Patterns
	Templates
	Auxiliary Rule Sets

	Glossary
	Index

