
 

C H A P T E R  2

 

Overview

 

9

 

Syntax 2

 

Overview 2

 

This chapter describes the syntax and structure of a Dylan program, from the 
outside in.  This is one of the two defining characteristics of Dylan.  The other is 
the set of objects on which a Dylan program operates; objects and their types 
are discussed in the following chapters.  This section is only an overview; 
language constructs briefly mentioned here are explained in detail in later 
sections.  A formal specification of Dylan syntax appears in Appendix A, 
“BNF.”

 

Libraries and Modules 2

 

A complete Dylan 

 

program

 

 consists of one or more 

 

libraries

 

.  Some of these 
libraries are written by the programmer, others are supplied by other 
programmers or by the Dylan implementation.  A library is Dylan's unit of 
separate compilation and optimization.  The libraries that compose a program 
can be linked together as early as during compilation or as late as while the 
program is running.  Program structure inside of a library is static and does not 
change after compilation.  However, many Dylan implementations provide an 
incremental compilation feature which allows a library under development to 
be modified, while the program is running, by modifying and recompiling 
portions of the library.

A library contains one or more 

 

modules

 

.  A module is Dylan's unit of global 
name scoping, and thus of modularity and information hiding.  A module can 
be exported from its library; otherwise it is internal to that library.  A library 
can import modules from other libraries.  Only an exported module can be 
imported.

A module contains zero or more source records and a set of bindings.

A 

 

source record

 

 is an implementation-defined unit of source program text. For 
example, in a file-based development environment each source file would be 
one source record.  As another example, in an interactive Dylan interpreter 
each executable unit of programmer input would be a source record.  The 

 

 

This document was created with FrameMaker 4.0.4



 

C H A P T E R  2  

 

Syntax

 

10

 

Bindings

 

source program text in a source record is a body, a grammatical element used in 
several places in Dylan.

 

Bindings 2

 

A

 

 

 

binding

 

 is an association of a name with a value.  The bindings in a module 
persist for the life of the program execution.  The scope of such a binding is its 
module.  That is, the binding is visible to all source-records in the module.  A 
module can export bindings and can import bindings from other modules.  
Only an exported binding can be imported.  A binding is visible to all 
source-records in a module that imports it.

A binding may be 

 

specialized

 

. This restricts the types of values that may be 
held in the binding.  An error will be signaled on any attempt to initialize or 
assign the binding to a value that is not of the correct type.

A binding is either 

 

constant

 

 or 

 

variable

 

.  A constant (or read-only) binding 
always has the same value.  In contrast, a variable (or writable) binding can 
have its value changed, using the assignment operator 

 

:=

 

.  Most bindings in a 
typical Dylan module are constant.

 

Macros 2

 

A 

 

macro

 

 is an extension to the core language that can be defined by the 
programmer, by the implementation, or as part of the Dylan language 
specification.  Much of the grammatical structure of Dylan is built with 
macros.  A macro defines the meaning of one construct in terms of another 
construct.  The original construct is the call to the macro.  The replacement 
construct is the expansion of the macro.  The compiler processes the expansion 
in place of the call.

Portions of the call to a macro are substituted into part of the macro definition 
to create the expansion.  This substitution preserves the meanings of names.  In 
other words, each name inserted into the expansion from the macro call refers 
to the same binding that it referred to in the call, and each name inserted into 
the expansion from the macro definition refers to the same binding that it 
referred to in the definition.   



 

C H A P T E R  2

 

Syntax

Bodies

 

11

 

A macro is named by a binding and thus is available for use wherever that 
binding is visible.  There are three kinds of macros: defining macros, which 
extend the available set of definitions; statement macros, which extend the 
available set of statements; and function macros, which look syntactically like 
function calls but have more flexible semantics.

 

Bodies 2

 

A 

 

body

 

 is a sequence of zero or more constituents.  When multiple constituents 
are present, they are separated by semicolons.  When at least one constituent is 
present, the last constituent can optionally be followed by a semicolon; this 
allows programmers to regard the semicolon as either a terminator or a 
separator, according to their preferred programming style.

A 

 

constituent

 

 is either a definition, a local declaration, or an expression.  
Definitions and local declarations form the structure of a program and do not 
return values.  In contrast, expressions are executed for the values they return 
and/or the side-effects that they perform.

 

Definitions 2

 

A 

 

definition

 

 is either a call to a user-defined defining macro, a call to a built-in 
defining macro, or a special definition.  Typically, a definition defines a binding 
in the module containing the definition.  Some definitions define more than one 
binding, and some do not define any bindings.

A 

 

user-defined defining macro

 

 is a macro that defines a definition in terms of 
other constructs.  A call to a user-defined defining macro always begins with 
the word 

 

define

 

 and includes the name of the defining macro.  This name 
when suffixed by “

 

-definer

 

” is the name of a visible binding whose value is 
the defining macro.  The rest of the syntax of a call to a user-defined defining 
macro is determined by the particular macro.  Some definitions include a body.  
Advanced programmers often define new defining macros as part of 
structuring a program in a readable and modular way.

A 

 

built-in defining macro

 

 is like a user-defined defining macro but is specified 
as part of the Dylan language.  There are eight built-in defining macros: 



 

C H A P T E R  2  

 

Syntax

 

12

 

Local Declarations

 

define class

 

, 

 

define constant

 

, 

 

define generic

 

, 

 

define inert

 

, 

 

define library

 

, 

 

define method

 

, 

 

define module

 

, and 

 

define 
variable

 

.

A 

 

special definition

 

 is a definition construct that is built into the grammar of 
Dylan.  There is only one special definition: 

 

define macro

 

.

An implementation can add new kinds of definitions as language extensions. 
Such definitions may be implemented as special definitions.  However, they 
will more commonly take the form of user-defined definition macros that are 
the values of bindings exported by implementation-defined modules.

 

Local Declarations 2

 

A 

 

local declaration

 

 is a construct that establishes local bindings or condition 
handlers whose scope is the remainder of the body following the local 
declaration.

Unlike module bindings, local bindings are established during program 
execution, each time the local declaration is executed. They persist for as long 
as code in their scope is active.  Local bindings persist after the body containing 
them returns if they are referenced by a method created inside the body and a 
reference to the method escapes from the body, so that it could be called after 
the body returns.  Unlike module bindings, local bindings are always variable.  
However, since a local binding has a limited scope, if there is no assignment 
within that scope, the local binding is effectively constant.

A local binding shadows any module binding with the same name and any 
surrounding local binding with the same name.  The innermost binding is the 
one referenced.

The name of a local binding cannot be the name of a macro.

There are three kinds of local declaration: local value bindings (

 

let

 

), local 
method bindings (

 

local

 

), and condition handler establishment (

 

let 
handler

 

).

The 

 

local value bindings

 

 construct, 

 

let

 

, executes an expression and locally 
binds names to the values returned by that expression.



 

C H A P T E R  2

 

Syntax

Expressions

 

13

 

The 

 

local method bindings

 

 construct, 

 

local

 

, locally binds names to bare 
methods.  These bindings are visible in the remainder of the body and also 
inside the methods, permitting recursion.

The 

 

condition handler establishing

 

 construct, 

 

let handler

 

, establishes a 
function to be called if a condition of a given type is signaled during the 
execution of the remainder of the body or anything the body calls.  The handler 
is disestablished as soon as the body returns.  Unlike the other two kinds of 
local declaration, 

 

let handler

 

 does not establish any bindings.

 

Expressions 2

 

An 

 

expression

 

 is a construct that is executed for the values it returns and/or 
the side-effects that it performs.  The “active” portions of a Dylan program are 
expressions.  An expression is either a literal constant, a named value reference, 
a function call, a unary operator call, a binary operator call, an element 
reference, a slot reference, a parenthesized expression, or a statement.

An 

 

operand

 

 is a restricted expression: it cannot be a unary or binary operator 
call nor a symbol literal.  The other seven forms of expression are allowed.  
Operands appear in situations in the grammar where an expression is desirable 
but the full generality of expressions would make the grammar ambiguous.

A 

 

literal constant

 

 directly represents an object.  Literal constants are available 
for numbers, characters, strings, symbols, boolean values, pairs, lists, and 
vectors. For example:
number

 

123, 1.5, -4.0, #x1f4e

 

character

 

'a', '\n'

 

string

 

"foo", "line 1\nline 2"

 

symbol

 

test:, #"red"

 

boolean value

 

#t, #f

 

pair

 

#(1 . "one")

 

list

 

#(1, 2, 3)

 

vector

 

#[1, 2, 3]



 

C H A P T E R  2  

 

Syntax

 

14

 

Expressions

 

Literal constants are immutable.  Attempting to modify an immutable object 
has undefined consequences.  Immutable objects may share structure.  Literal 
constants that are equal may or may not be identical.

A symbol can be indicated in two ways: as a keyword (for example, 

 

test:

 

) or 
as a unique string (for example, 

 

#"red"

 

).  The difference is purely syntactic; 
the choice is provided to promote program readability.

A string literal can be broken across lines by writing two string literals in a row, 
separated only by whitespace; they are automatically concatenated (without a 
newline character).

A 

 

named value reference

 

 returns the value of a visible binding given its name.  
For example, 

 

foo

 

.  The referenced binding can be a module binding (either 
constant or variable) or a local binding established by a local declaration or by 
a parameter list.  The value of the binding must not be a macro.

A 

 

reserved word

 

 is a syntactic token that has the form of a name but is 
reserved by the Dylan language and so cannot be given a binding and cannot 
be used as a named value reference.  There are seven reserved words in Dylan: 

 

define

 

, 

 

end

 

, 

 

handler

 

, 

 

let

 

, 

 

local

 

, 

 

macro

 

, and 

 

otherwise

 

.

A 

 

function call

 

 applies a function to arguments, and returns whatever values 
the function returns.  The function is indicated by an operand and can be a 
generic function, a method, or a function macro.  The arguments are indicated 
by expressions separated by commas and enclosed in parentheses.  For 
example, 

 

f(x, y)

 

.  For readability, the comma can be omitted between the 
two arguments in a keyword/value pair, for example 

 

element(c, k, 
default: d)

 

 is a function call with four arguments.

A 

 

unary operator call

 

 consists of an operand preceded by one of the two unary 
operators - (arithmetic negation) or ~ (logical negation).  For example, - x.  
This is actually an abbreviated notation for a function call.

A binary operator call consists of two expressions separated by one of the 
binary operators + (addition), - (subtraction), * (multiplication), / (division), ^ 
(exponentiation), = (equality), == (identity), < (less than), > (greater than), <= 
(less than or equal), >= (greater than or equal), ~= (not equal), ~== (not 
identical), & (logical and), | (logical or), or := (assignment).  When binary 
operator calls are chained together, they are grouped by rules of precedence 
and associativity and by parentheses.  For example, (a - b) * x + c * x 
^ 2.  Except for the last three operators, a binary operator call is actually an 
abbreviated notation for a function call.  The last three operators (&, |, and :=) 
are treated specially be the compiler. 



C H A P T E R  2

Syntax

Statements 15

An element reference consists of an operand that indicates a collection and an 
expression in square brackets that indicates a key.   Instead of a key, there can 
be multiple expressions separated by commas that indicate array indices. For 
example, c[k] or a[i, j]. This is actually an abbreviated notation for a 
function call.

A slot reference is another abbreviated notation for a function call.  It consists 
of an operand that indicates an object, a period, and a named value reference 
that indicates a one-argument function to apply to the object.  Typically the 
function is a slot getter but this is not required.  For example, 
airplane.wingspan.

A parenthesized expression is any expression inside parentheses.  The 
parentheses have no significance except to group the arguments of an operator 
or to turn a general expression into an operand.  For example, (a + b) * c.

Statements 2

A statement is a call to a statement macro.  It begins with the name of a visible 
binding whose value is a statement macro.  The statement ends with the word 
end optionally followed by the same name that began the statement.  In 
between is a program fragment whose syntax is determined by the macro 
definition.  Typically this fragment includes an optional body.  For example, 
if (ship.ready?) embark(passenger, ship) end if.

A statement macro can be built-in or user-defined.

A user-defined statement macro is a macro that defines how to implement a 
statement in terms of other constructs.  Advanced programmers often define 
new statement macros as part of structuring a program in a readable and 
modular way.

A built-in statement macro is like a user-defined statement macro but is 
specified as part of the Dylan language.  There are nine built-in statement 
macros: begin, block, case, for, if, select, unless, until, and while.

An implementation can add new kinds of statements as language extensions.  
Such a statement takes the form of a user-defined statement macro that is the 
value of a binding exported by an implementation-defined module.



C H A P T E R  2  

Syntax

16 Parameter Lists

Parameter Lists 2

Several Dylan constructs contain a parameter list, which describes the 
arguments expected by a function and the values returned by that function.  
The description includes names, types, keyword arguments, fixed or variable 
number of arguments, and fixed or variable number of values.  The argument 
names specified are locally bound to the values of the arguments when the 
function is called.  The value names specified are only for documentation.

The syntactic details of parameter lists are described in “Methods” on page 412.

Lexical Syntax 2

Dylan source code is a sequence of tokens.  Whitespace is required between 
tokens if the tokens would otherwise blend together. Whitespace is optional 
between self-delimiting tokens.  Alphabetic case is not significant except within 
character and string literals.

Whitespace can be a space character, a tab character, a newline character, or a 
comment.  Implementations can define additional whitespace characters.

A comment can be single-line or delimited.  Although comments count as 
whitespace, the beginning of a comment can blend with a preceding token, so 
in general comments should be surrounded by genuine whitespace.

A single-line comment consists of two slash characters in a row, followed by 
any number of characters up to and including the first newline character or the 
end of the source record.  For example, // This line is a kludge!.

A delimited comment consists of a slash character immediately followed by a 
star character, any number of characters including balanced slash-star / 
star-slash pairs, and finally a star character immediately followed by a slash 
character. For example, /* set x to 3 */.

A single-line comment may appear within a delimited comment; occurances of 
slash-star or star-slash within the single line comment are ignored.



C H A P T E R  2

Syntax

Lexical Syntax 17

A token is a name, a #-word, an operator, a number, a character literal, a string 
literal, a symbol literal, or punctuation.

A name is one of the following four possibilities:

■ An alphabetic character followed by zero or more name characters.

■ A numeric character followed by two or more name characters including at 
least two alphabetic characters in a row.

■ A graphic character followed by one or more name characters including at 
least one alphabetic character.

■ A “\” (backslash) followed by a function operator. 

An alphabetic character is any of the 26 letters of the Roman alphabet in upper 
and lower case.

A numeric character is any of the 10 digits.

A graphic character is one of the following:

! & * < = > | ^ $ % @ _

A name character is an alphabetic character, a numeric character, a graphic 
character, or one of the following:

- + ~ ? /

The rich set of name characters means that name and operator tokens can 
blend.  Thus Dylan programs usually set off operators with whitespace.

Implementations can add additional characters but programs using them will 
not be portable.

A #-word  is one of #t, #f, #next, #rest, #key, or #all-keys.  The first two 
are literal constants, the others are used in parameter lists.  Implementations 
can add additional implementation-defined #-words, but programmers cannot 
add their own #-words.



C H A P T E R  2  

Syntax

18 Lexical Syntax

An operator is one of the following:

+ addition
- subtraction and negation
* multiplication
/ division
^ exponentiation
= equality
== identity
< less than
> greater than
<= less than or equal
>= greater than or equal
~= not equal
~== not identical
& logical and
| logical or
:= assignment
~ logical negation

Programmers cannot add their own operators.

A number is a decimal integer with an optional leading sign, a binary integer, 
an octal integer, a hexadecimal integer, a ratio of two decimal integers with an 
optional leading sign, or a floating-point number.  The complete syntax of 
numbers is given in “Numbers” on page 406.

A character literal is a printing character (including space, but not ' nor \) or a 
backslash escape sequence enclosed in a pair of single-quote characters '.

A string literal is a sequence of printing characters (including space, but not " 
nor \) and backslash escape sequences enclosed in a pair of double-quote 
characters ".

The backslash escape sequences used in character and string literals allow 
“quoting” of the special characters ', ", and \, provide names for “control” 
characters such as newline, and allow Unicode characters to be specified by 
their hexadecimal codes.

A symbol literal is a keyword or a unique string.  A keyword is a name 
followed immediately by a colon character “:”.  A unique string is a sharp sign 
“#” followed immediately by a string literal.



C H A P T E R  2

Syntax

Special Treatment of Names 19

Punctuation is one of the following:

( ) parentheses
[ ] square brackets
{, } curly brackets
, comma
. period
; semicolon
= defaulting/initialization
:: type specialization
== singleton specialization
=> arrow
#( list/pair literal
#[ vector literal
?, ?? macro pattern variables
... macro ellipsis

Note that some tokens are both punctuation and operators.  This ambiguity is 
resolved by grammatical context.

Note that some punctuation tokens (for example period and equal sign) are 
capable of blending into some other tokens.  Where this can occur, whitespace 
must be inserted to delimit the token boundary.

Special Treatment of Names 2

Escaping Names 2

The escape character ( \ ) followed by any name or operator-name has the 
same meaning as that name or operator-name, except that it is stripped of 
special syntactic properties. If it would otherwise be a reserved word or 
operator, it is not recognized as such.

For example, \if and if are names for the same binding, but \if is treated 
syntactically as a named value reference, while if is the beginning of a 
statement. Similarly, \+ and + refer to the same binding, but the former is 
treated syntactically as a named value reference, and the latter as an operator.



C H A P T E R  2  

Syntax

20 Top-Level Definitions

For reserved words, this allows the names of statement macros to be exported 
and imported from modules. It does not allow them to be used as the names of 
local bindings, nor does it allow them to be executed. (That is, they cannot be 
used as bindings to runtime values.)

For operators, it allows the operator to be used where a named value reference 
is required, for example as the name in a method definition, as an argument to 
a function, or in a define module export clause. This feature can only be 
used for operators which provide a shorthand for a function call. It cannot be 
used for special operators.

Function Call Shorthand 2

Dylan provides convenient syntax for calling a number of functions. These 
include the operators which are not special operators, the array reference 
syntax, and the singleton syntax.

In all cases, the syntax is equivalent to using the name of the function in the 
current environment. The syntax does not automatically refer to a binding in 
the Dylan module.

Top-Level Definitions 2

Dylan's built-in defining macros can only be used at top level.  When the 
expansion of a user-defined macro includes a call to a built-in defining macro, 
the user-defined macro also can only be used at top level.

A constituent is at top level if and only if it is a direct constituent of a body, no 
preceding constituent of that body is a local declaration, and the body is either 
the body of a source record or the body of a begin statement that is itself a 
constituent at top level. When a constituent appears inside a call to a macro, 
whether that constituent is at top level must be determined after macro 
expansion.

The effect of the above rule is that a constituent at top level is not in the scope 
of any local declarations, is not subject to any condition handlers other than 
default handlers, and is not affected by any flow of control constructs such as 
conditionals and iterations.  This restriction enhances the static nature of 
definitions.



C H A P T E R  2

Syntax

Dylan Interchange Format 21

Dylan Interchange Format 2

The Dylan interchange format is a standard file format for publishing Dylan 
source code.  Such a file has two parts, the file header and the code body.  The 
file header comes before the code body.

The code body consists of a source record.

The  file header consists of one or more keyword-value pairs, as follows:

■ A keyword is a letter, followed by zero or more letters, digits, and hyphens, 
followed by a colon, contains only characters from the ISO 646 7-bit 
character set, and is case-independent.

■ A keyword begins on a new line, and cannot be preceded by whitespace.

■ All text (excluding whitespace) between the keyword and the next newline 
is considered to be the value.  Additional lines can be added by having the 
additional lines start with whitespace.  Leading whitespace is ignored on all 
lines.

■ The meaning of the value is determined by the keyword.

■ Implementations must recognize and handle standardized keywords 
properly, unless the specification for a keyword explicitly states that it can be 
ignored.

■ When importing a file, implementations are free to ignore any non-standard 
keyword-value pairs that they do not recognize.

■ When exporting a file, implementations must use standard keywords 
properly.  Implementations are free to use non-standard keywords. 

■ The definition of a keyword may specify that the keyword may occur more 
than once in a single file header.  If it does not, then it is an error for the 
keyword to occur more than once.  If it does, it should specify the meaning 
of multiple occurances.

The file header cannot contain comments, or other Dylan source code.

Blank lines may not appear in the file header.  A blank line defines the end of 
the file header and the beginning of the code body.  The blank line is not part of 



C H A P T E R  2  

Syntax

22 Naming Conventions

the code body.  (A "blank line" is a line consisting of zero or more space or tab 
characters, ending in a newline character.)

The following standard keywords are defined:

language:  language-name [Header keyword] 2

The source record in the file is written in the named language. The only 
portable value for this keyword is infix-dylan.

module:  module-name [Header keyword] 2

The source record in the file is associated with the named module.  This 
keyword is required.

author: text [Header keyword]
copyright: text [Header keyword]
version: text [Header keyword] 2

These are provided for standardization.  They are optional, and can be ignored 
by the implementation.

A typical Dylan source file might look like this:

module: quickdraw
author: J. Random Rect
        Linear Wheels, Inc., "Where quality is a slogan!"
        rect@linear.com
copyright: (c) 1995 Linear Wheels, Inc., All rights reserved
version: 1.3 alpha (not fully tested)

define constant $black-color = ...

Naming Conventions 2

Several conventions for naming module bindings help programmers identify 
the purposes of bindings.  In general, the names of bindings do not affect the 



C H A P T E R  2

Syntax

Naming Conventions 23

semantics of a program, but are simply used to improve readability.  (The 
exceptions to this rule are the “-definer” suffix used by definition macros, 
and the “-setter” suffix, described below.)

■ Module bindings used to hold types begin and end with angle brackets.

<window>
<object>
<character>
<number>
<stream>
<list>

■ Variable module bindings begin and end with asterisks. 

*parse-level*
*incremental-search-string*
*machine-state*
*window-count*

■ Program constants begin with a dollar sign.

$pi
$end-of-file

■ The names of most predicate functions end with a question mark.  
Predicates are functions which return a true or false value.

subclass?
even?
instance?

■ Operations that return a value similar to one of their arguments and which 
also destructively modify the argument end in a !.  (It will often also be the 
case that destructive and non-destructive variations of the function exist.) ! 
isn't a universal warning that an operation is destructive. Destructive 
functions that return other values (like -setter functions and pop) don't 
need to use the ! convention.

reverse!
sort!



C H A P T E R  2  

Syntax

24 Naming Conventions

■ Operations that retrieve a value from a location are called getters.  
Operations that store into a location are called setters.  In general, getters 
and setters come in pairs.  Setter binding names are derived by appending 
“-setter” to the corresponding getter binding name.  This convention is 
used to generate setter names automatically, and it is used by :=, the 
assignment operator, to find the setter that corresponds to a given getter.

element      element-setter
size         size-setter
color        color-setter


	Dylan Reference Manual
	Contents
	About This Book
	Introduction
	Background and Goals
	Language Overview
	Manual Notation

	Syntax
	Overview
	Libraries and Modules
	Bindings
	Macros
	Bodies
	Definitions
	Local Declarations
	Expressions
	Statements
	Parameter Lists
	Lexical Syntax
	Special Treatment of Names
	Escaping Names
	Function Call Shorthand

	Top- Level Definitions
	Dylan Interchange Format
	Naming Conventions

	Program Structure
	Modules
	Defining Module Bindings

	Libraries

	Program Control
	Overview
	Function Calls
	General Syntax
	Slot Reference
	Element Reference

	Operators
	Assignment
	Conditional Execution
	True and False

	Iteration
	Iteration Statements
	Tail Recursion

	Non- Local Exits and Cleanup Clauses
	Multiple Values
	Order of Execution
	Execution Order Within Expressions


	Types and Classes
	Overview
	The Type Protocol
	Base Types and Pseudosubtypes
	Type Disjointness

	Classes
	Features of Classes
	Creating Classes
	Class Inheritance
	Computing the Class Precedence List

	Slots
	Slot Inheritance
	Slot Specifications
	Init Specifications
	Init Keywords
	Slot Allocation
	Constant Slots
	Specializing Slots
	Overriding Slots in Subclasses
	Using Slots


	Instance Creation and Initialization
	Overview
	Additional Behavior of Make and Initialize
	Initialization of Class Allocated Slots
	Testing the Initialization of a Slot

	Inherited Slot Specifications
	Initialization Argument Specifications
	Initialization Argument Inheritance


	Singletons
	Union Types
	Limited Types
	Limited Type Constructor
	Limited Integer Types
	Limited Integer Type Protocol

	Limited Collection Types


	Functions
	Overview
	Generic Functions
	Methods
	Methods in Generic Functions
	Local Methods
	Bare Methods
	Closures


	Parameter Lists
	Kinds of Parameters
	Kinds of Parameter Lists
	Specializing Required Parameters
	Keyword Parameters
	Types for Keyword Parameters

	Result Values
	Parameter List Congruency
	Parameter Lists of Implicitly Defined Generic Functions

	Method Dispatch
	Method Specificity
	Calling Less Specific Methods
	Passing Different Arguments to Next- Method
	The Next- Method Parameter


	Operations on Functions

	Conditions
	Background
	Overview
	Signalers, Conditions, and Handlers
	Exception Handling
	Stack Model
	Recovery and Exits
	Restarts
	Recovery Protocols

	Condition Messages
	Introspective Operations

	Collections
	Overview
	The Iteration Protocol

	Collection Keys
	Iteration Stability and Natural Order
	Mutability
	Collection Alteration and Allocation
	Collection Alignment
	Defining a New Collection Class
	Tables
	Element Types
	Limited Collection Types
	Element Type Subclassing
	Creating Limited Collection Types
	Uninstantiable Limited Collection Types
	Instantiable Limited Collection Types



	Sealing
	Overview
	Explicitly Known Objects
	Declaring Characteristics of Classes
	Declaring Characteristics of Generic Functions
	Define Inert Domain
	Rationale
	Pseudosubtype Examples
	Abbreviations for Define Inert Domain
	Implied Restrictions on Method Definitions


	Macros
	Overview
	Compilation and Macro Processing

	Extensible Grammar
	Definition Macros
	Statement Macros
	Function Macros

	Macro Names
	Rewrite Rules
	Patterns
	Special Rules for Definitions
	Special Rules for Statements
	Special Rules for Function Macros

	Pattern Variable Constraints
	Intermediate Words

	Templates
	Auxiliary Rule Sets
	Hygiene
	Intentional Hygiene Violation
	Hygiene Versus Module Encapsulation

	Rewrite Rule Examples
	Statement Macros
	Begin
	Block
	Case
	For
	If
	Method
	Select
	Unless
	Until
	While

	Definition Macros
	Define Class
	Define Constant
	Define Domain
	Define Generic
	Define Library
	Define Method
	Define Module
	Define Variable

	Additional Examples
	Test and Test- setter
	Transform!
	Formatting- table
	With- input- context
	Define Command
	Get- resource
	Completing- from- suggestions
	Define Jump- instruction



	The Built- In Classes
	Overview
	Objects
	Types
	Types
	Classes
	Singletons

	Simple Objects
	Characters
	Symbols
	Booleans

	Numbers
	Numbers
	Complex Numbers
	Reals
	Floats
	Rationals
	Integers

	Collections
	Collections
	Explicit Key Collections
	Sequences
	Mutable Collections
	Stretchy Collections
	Arrays
	Vectors
	Deques
	Lists
	Ranges
	Strings
	Tables

	Functions
	Functions
	Generic Functions
	Methods

	Conditions
	Conditions
	Serious Conditions
	Errors
	Warnings
	Restarts
	Aborts


	The Built- In Functions
	Overview
	Constructing and Initializing Instances
	General Constructor
	Initialization
	Specific Constructors

	Equality and Comparison
	Not and Identity
	Equality Comparisons
	Magnitude Comparisons

	Arithmetic Operations
	Properties
	Arithmetic Operations

	Coercing and Copying Objects
	General Coercion Function
	Coercing Case
	Copying Objects

	Collection Operations
	Collection Properties
	Selecting Elements
	Adding and Removing Elements
	Reordering Elements
	Set Operations
	Subsequence Operations
	Mapping and Reducing
	Simple Mapping
	Extensible Mapping Functions
	Other Mapping Functions

	The Iteration Protocol
	The Table Protocol


	Reflective Operations on Types
	Functional Operations
	Function Application
	Reflective Operations on Functions
	Operations on Conditions
	Signaling Conditions
	Handling Conditions
	Introspection on Conditions


	Other Built- In Objects
	Other Built- In Objects

	The Built- In Macros and Special Operators
	Overview
	Definitions
	Local Declarations
	Statements
	Conditionals
	Iteration Constructs


	Special Operators
	Assignment
	Conditional Execution



	Appendix A
	General Notes
	Lexical Notes
	Lexical Grammar
	Comments
	Tokens
	Reserved Words
	Names, Symbols and Keywords
	Operators
	Character and String Literals
	Numbers

	Grammar
	Program Structure
	Property Lists
	Fragments
	Definitions
	Local Declarations
	Expressions
	Statements
	Methods
	Macro Definitions
	Patterns
	Templates
	Auxiliary Rule Sets



	Glossary
	Index


